rFVIIa in VAD Patients

- Limited data exist regarding safety
- Multiple factors increase pro-thrombotic potential
- Multiple case reports of successful use, with only one case report of intra-device thrombotic event
 - Reporting bias?
 - Overall incidence of thrombotic events > 20%

Summary of VAD's and rFVIIa Case Reports

Reference	Device (being implanted)	Dose of rFVIIa	Thromboembolic Event	Outcome
Apostolidou, et al.	HeartMate XVE LVAD	90 mcg/kg	LA thrombus	Recovery and OHT
Flynn, et al.	HeartMate Implantable LVAD	90 mcg/kg	None	Recovery
Heise, et al.	BiVAD	120 mcg/kg	None, cerebral hypoperfusion?	POD 9 cerebral hypoperfusion, death
Kogan, et al.	Biomedicus Centrifugal Pump RVAD	35 mcg/kg x 2 doses	None	Recovery
Potapov, et al.	Berlin Heart AG BiVAD	120 mcg/kg, 60 mcg/kg	None	Chest closure & nml function of VAD
Reade, et al.	Abiomed BVS 5000 LVAD	35 mcg/kg	Extensive clot in the LVAD inflow chamber	Death
Saeed, et al.	HeartWare HVAD	90 mcg/kg	Thrombus in RA and Death SVC	
Tarzia, et al.	Berlin Heart AG BiVAD	120 mcg/kg	None	Nml function of VAD
Zietkiewicz, et al.	POLVAD LVAD	20 mcg/kg, 30 mcg/kg	None	Nml function of VAD, but death

Off-label use of recombinant activated factor VII in intractable haemorrhage after cardiovascular surgery: an observational study of practices in 23 French cardiac centres (2005–7)*

```
Marie Hacquard a,b,c,1,*, Marion Durand a,b,d,1, Thomas Lecompte a,b,c, Stéphanie Boini e,f,b, Serge Briançon e,f,b, Jean-Pierre Carteaux a,b,d
```

- 37 patient with MCS received rFVIIa
 - 29 ECMO, 7 transcutaneous VAD, 2 TAH
- Treatment in the OR for 18 pts
- Mean dose 65.3 mcg/kg (24-120 mcg/kg)
- Bleeding stopped in 10 pts, was reduced in 14 pts and was unchanged in 13 pts
 - Thrombotic rate was 27% (n=10)
 - Survival rate at 28 days = 45.7%

High Incidence of Thromboembolic Events in Left Ventricular Assist Device Patients Treated With Recombinant Activated Factor VII

Brian A. Bruckner, MD,^a Daniel J. DiBardino, MD,^a Qian Ning, PA-C,^b Alfred Adeboygeun, MD,^b Karim Mahmoud, MD,^b Jamie Valdes, MD,^b John Eze, MD,^b Paul M. Allison, MD,^b Denton A. Cooley, MD,^b Igor D. Gregoric, MD,^b and Oscar H. Frazier, MD^b

- Single center, retrospective review of 62 patients who received an LVAD and rFVIIa
- Stratified by low dose (10-20 mcg/kg, n = 32) vs high dose (30-70 mcg/kg, n = 30)
- Measured correction of coagulation abnormalities, transfusion requirements and thromboembolic events

VAD's and rFVIIa – Efficacy

Table 3. Significant Group Differences in Transfusion Requirements

	Group		
	Low dose: 10–20 μ g/kg ($n = 32$)	High dose: 30–70 μ g/kg ($n=30$)	
Packed red blood cells (units)			
Before	$24.5 \pm 14.2 (3-85)$	$29.8 \pm 35.6 (2-118)$	
After	$10.2 \pm 8.9 (1-32)$	$11.9 \pm 12.9 (0-48)$	
<i>p</i> -value	0.002	0.003	
Fresh-frozen plasma (units)			
Before	$23.4 \pm 21.3 (0-86)$	$28.4 \pm 33.1 (3-115)$	
After	$6.9 \pm 7.5 (0-30)$	$10.6 \pm 11.0 (0-44)$	
<i>p</i> -value	< 0.0001	0.002	
Platelets (units)			
Before	$35.4 \pm 24.1 (4-105)$	$29.5 \pm 27.2 (0-95)$	
After	$13.6 \pm 19.7 (0-71)$	$8.8 \pm 11.8 (0-40)$	
<i>p</i> -value	< 0.0001	< 0.0001	

VAD's and rFVIIa - Safety

Table 4. Summary of Thromboembolic Events

	Grou	_	
Complication	Low dose: 10–20 μg/kg (n = 32)	High dose: 30–70 μg/kg (n = 30)	Total (n = 62)
Stroke	0	2	2
Deep venous thrombosis	2	1	3
Myocardial infarction	0	1	1
Pulmonary embolism	1	2	3
Vascular occlusion	0	3	3
Ventricular clot	0	2	2
Total (%)	3 (9.4)	11 (36.7)	14 (22.6)

GIB: subsequent thrombosis risk

- Stulak and collegues
- 2003-2011, 389 patients CF-LVAD, dual center
- Analyzed GI bleeding and thrombotic events
- 0.45 GI bleeds/patient-year of support
- 0.31 Thromb-embolic events/patient-year of support
- 7.4-fold increase in TE after a GIB!
 - 14.5-fold increase if > 70 years old
- Morbidity

LVAD Thrombosis

- Device related thrombosis 0.2 events/patientyear
 - literature suggests increasing rates
- Risks factors and pathophysiology
 - Multifactorial

Device Thrombosis Pathophysiology

Table 1 Factors That May Increase Propensity to Pump Thrombus Formation in Continuous-Flow Pumps

Pump-related

- 1. Intrinsic heat generated by rotational movement of pump
- 2. Blood-contacting surface interactions
- 3. Shear stress-induced platelet activation
- 4. Regions of flow field stasis
- 5. Thrombus formation at cannulation site
- Outflow graft impingement by outflow protector (now corrected)
- 7. Inflow cannula migration and malposition

Patient-related

- 1. Atrial fibrillation
- 2. Pre-existent atrial or ventricular thrombus
- 3. Presence of left sided mechanical prosthesis
- 4. Infection or sepsis
- 5. Non-compliance
- 6. Low flow due to:
 - a. Cannula positional change over time (weight gain or loss, bending torso)
 - b. Right-sided heart failure
 - c. Hypovolemia
 - d. Hypertension

- 7. Hypercoagulable state:
 - a. Protein C deficiency
 - b. Protein S deficiency
 - c. Anti-thrombin deficiency
 - d. Plasminogen deficiency
 - e. Lupus anti-coaqulant
 - f. Heparin-induced thrombocytopenia
 - g. Activated protein C deficiency
 - h. Factor V Leiden
 - i. Prothrombin G20210A mutation
 - j. Malignancy

Management-related

- 1. Sub-therapeutic international normalized ratio
- 2. Absence of anti-platelet therapy
- 3. Inflow cannula malposition at implant
- 4. Infection management
- 5. Low flow due to:
 - a. Low speed setting to manage gastrointestinal bleeding and/or aortic insufficiency
 - b. Sub-optimal hypertension management

Pharmacotherapy HeartMate II®

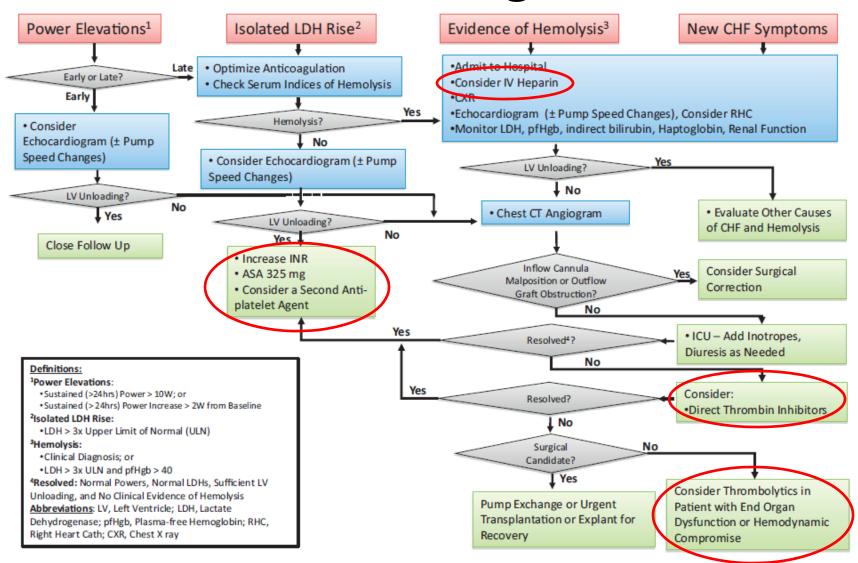
- Ilb/Illa inhibitors (eptifibatide)
 - 0.1-2 mcg/kg/min (+/- bolus)
 - Up to 6 days in duration
 - Most with parenteral anticoagulant, therapeutic INR, anti-platelet therapy unknown
- Combined literature cohort
 - 27 patients
 - 7 success, 8 deaths, 13 bleeding complications
 - Limitations to currently available literature
- CAUTION

Pharmacotherapy HeartMate II®

- Direct Thrombin inhibitors
 - Theoretical advantages/limitations
 - Greater efficacy in prevention of clot generation?
 - Inferior in attenuating clot propagation/strength?
 - No convincing literature to support use
 - Hirudin and argatroban in 5 case reports
 - Dose not reported
 - Bleeding complications
 - Included in thrombosis algorithm

Pharmacotherapy HeartMate II®

- Fibrinolytics
 - Alteplase reported, dosage varies
 - Intraventricular (systemic) administration
 - 4 published case reports
 - Patient outcomes not reported in detail
 - CAUTION

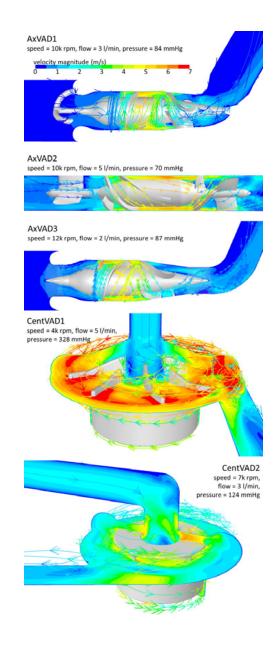

Pharmacotherapy HeartWare HVAD®

- IIb/IIIa inhibitors
 - Insufficient case reports
- Direct thrombin inhibitors
 - No data
- CAUTION

Pharmacotherapy HeartWare HVAD®

- Fibrinolytics
 - > 30 reported attempts (cases/BTT trials)
 - Frequent success, > 50%
 - Mostly alteplase
 - Total 15-60mg intraventricular/peripheral/unknown
 - 1 mg/min intraventricularly for 20-30 minutes
 - Strongest evidence, yet limitations
 - Caution
- Aggressive medication therapy limits first line definitive therapy – Surgical Intervention

Thrombosis Algorithm


J Heart Lung Transplant. 2013;32:667–670.

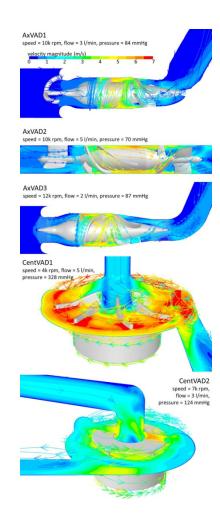
Other strategies

- Thromboelastrography (TEG)
- Platelet aggregation studies
- Literature is limited but emerging
- Consider in consultation with expert multidisciplinary team
 - Blood center physician/transfusion medicine
 - Hematology
 - Advanced heart failure (VAD/transplant)
 - Pharmacist

Characteristics of LVAD thrombosis

- Heart failure symptoms
- Hematuria
- Hemolysis markers
 - LDH elevation/Plasma free Hgb
- LVAD not unloading
- Power "spikes"

Pharmacotherapy. 2015;35(1):79-98.


J Biomech Eng. 2012Aug;134(8):081002.

Pharmacologic options

- Suspected device thrombosis?
 - Optimize anti-thrombotic regimen per protocol
 - INR goal, anti-platelet therapy
 - Consider parenteral anticoagulation
 - Heparin infusion protocols per institution protocol
 - Surgery is possible intervention
 - Other pharmacologic options?
 - Device considerations
 - Axial vs. centrifugal

Other Strategies Anemia in the LVAD recipient

- Hemolysis is a known LVAD complication
- Hemolysis contributes to anemia
- Any medications that allow Red Blood Cells tolerate LVAD turbulence?

Case Report - Pentoxifylline

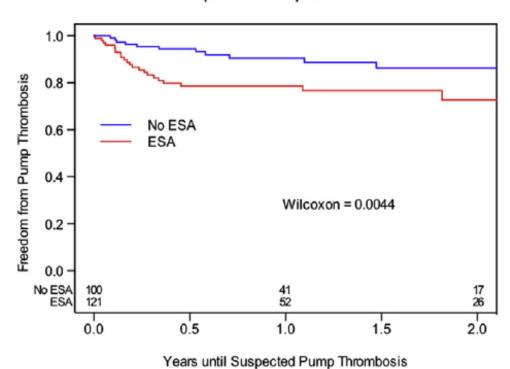
- LVAD BTT patient with GI bleeding/anemia
- Anti-thrombotics reduced
- Anemia via hemolysis persists without evidence of bleeding
- Pentoxifylline added after transfusion
- At 60 days Hgb stable and LDH near normal

- Increases erythrocyte flexibility and reduces whole blood viscosity
- No platelet inhibition/bleeding risk
- Reduce mechanical hemolysis?

Anemia and LVAD

- Likely at least ½ LVAD patients anemic
- Some centers > 50% bridge-to-transplant
- Erythropoiesis stimulating agents (ESA's) may increase hemoglobin (Hgb) without transfusions
 - Transfusions = risk for sensitization
- ESA's may contribute to thrombotic risk
- Risk versus benefit justified?

ESA in LVAD review


- Nassif, et al. JACC 2015
- Retrospective, single-center review
- 221 patients HMII LVAD
- Receiving ESA vs. no ESA
- Primary outcome: Pump thrombosis (PT)
 - 180 days
 - Secondary: mortality, stroke

Nassif, et al. JACC 2015

- PT: 37 patients
 - ESA 23%, no ESA 12%, p=0.03
 - HR=2.35, 95% CI 1.38-4, p=0.002
 - Dose related
 - Each 100 unit increase (darbopoetin) = 10% increase PT
 - HR=1.1, 95% CI 1.04-1.16; p<0.001
 - No difference in INR or Hgb at time of PT
 - No difference in admit/discharge CrCl, Hgb, INR

FIGURE 1 Freedom From Suspected Pump Thrombosis

Suspected Pump Thrombosis

Nassif, et al. JACC 2015

- Secondary outcomes
 - Inverse weighting of propensity scores used to reduce confounding by variables that may impact the administration of an ESA

TABLE 2 Clinical Outcomes and Hazard Ratios Before and After Inverse Weighting for Patients Receiving LVAD Support With and Without Use of ESAs (n=221)

	Before Inverse Weighting		After Inverse Weighting	
	HR (95% CI)	p Value	HR (95% CI)	p Value
Suspected pump thrombosis	2.26 (1.15-4.40)	0.002	2.35 (1.38-4.00)	0.002
All-cause mortality	1.56 (0.93-2.62)	0.09	1.62 (1.12-2.33)	0.01
Stroke	0.59 (0.26-1.31)	0.19	0.55 (0.30-1.02)	0.06
Ischemic stroke	0.59 (0.20-1.74)	0.34	0.51 (0.21-1.24)	0.14

ESA and the LVAD patient

- Study has limitations
- Extends cautious use of ESA to the heart failure patient with an LVAD
- Another factor to add to the Bleeding versus
 Clotting dilemma in the LVAD recipient